Linear Algebra

Matrices, mathematical Modeling, Euclid geometry, Sets, Realtions And Functions, Sigma, Cramers Rule, Cayley Hamilton Theorem, Arithmetic Progression, Geometric Progression, Harmonic Progression, Golden and Silver Ratio

Matrices

What is a Matrix?

A matrix is a rectangular array of elements, usually numbers,In general, an matrix looks like:

$$ \begin{equation} A_{m,n} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \end{equation} $$

matrix is enclosed by [ ] or ( ) or | | | | Compact form the above matrix is represented by [aij]m x n or A = [aij]

Why use Matrices?

With Matrix we can represent data, we can use matrices to work on multiple linear equations and mathematical equations, In many time-sensitive engineering applications, we can add, subtract or even multipy to get good approximations of much more complicated calculations. We use matrices in mathematics because often we need to deal with several variables at once—eg the coordinates of a point in the plane are written (x, y) or in space as (x, y, z) and these are often written as column matrices in the following form:

$$ \begin{equation} \begin{pmatrix} x \\ y \end{pmatrix} and \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{equation} $$

Types of matrix

$$ \begin{equation}eg: \begin{bmatrix} 0 \\ -6 \\ 4 \end{bmatrix} _{m,1} \end{equation} $$

$$ \begin{equation}eg: \begin{bmatrix} 0 & 19 &-2 \end{bmatrix} _{1,n} \end{equation} $$

$$ \begin{equation}eg: \begin{bmatrix} 0 & 19 & -2 \\ 5 & -1 & 12 \\ 4 & 8 & 0 \end{bmatrix} _{n,n} \end{equation} $$

$$ \begin{equation}eg: \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} _{m,m} \end{equation} $$

Note: A scalar matrix is a diagonal matrix but a diagonal matrix may or may not be a scalar matrix

$$ \begin{equation}eg: \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} _{m,m} \end{equation} $$

$$ \begin{equation}I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} _{m,m} \end{equation} $$

$$ \begin{equation}Eg \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} _{m,m} \end{equation} $$

$$ \begin{equation}eg: \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} and \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} are \enspace equal \enspace ,but \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} and \begin{bmatrix} 1 & 7 \\ 4 & 3 \end{bmatrix} are \enspace not \enspace equal \end{equation} $$

Opeartions on a single matrix

$$ \begin{equation}A = \begin{bmatrix} 5 & 4 & 3 \\ 4 & 0 & 4 \\ 7 & 10 & 3 \end{bmatrix}^T \enspace = \begin{bmatrix} 5 & 4 & 7 \\ 4 & 0 & 10 \\ 3 & 4 & 3 \end{bmatrix} \end{equation} $$

$$ \begin{equation}A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & g & i \end{vmatrix} \end{equation} $$

$$ \begin{equation} \begin{vmatrix} A \\ \end{vmatrix} = \enspace a \begin{vmatrix} e & f \\ h & i \\ \end{vmatrix} - \enspace b \begin{vmatrix} d & f \\ g & i \\ \end{vmatrix} + \enspace c \begin{vmatrix} d & e \\ g & h \\ \end{vmatrix} \end{equation} $$

$$ \begin{equation}Example = \begin{vmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \\ \end{vmatrix} \end{equation} $$

$$ |A| = 6×(−2×7 − 5×8) − 1×(4×7 − 5×2) + 1×(4×8 − (−2×2)) $$ $$ 6×(−54) − 1×(18) + 1×(36) $$ $$ −306 $$

How to use this tool for single matrix

Single Matrix

Operations on multiple matrices

$$ \begin{equation}A = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ \end{bmatrix} B\enspace = \begin{bmatrix} 5 & 6 & 7 \\ 3 & 4 & 5 \\ \end{bmatrix} \end{equation} $$

$$ \begin{equation}A + B = \begin{bmatrix} 1+5 & 2+6 & 3+7 \\ 7+3 & 8+4 & 9+5 \\ \end{bmatrix} = \begin{bmatrix} 6 & 8 & 10 \\ 10 & 12 & 14 \\ \end{bmatrix} \end{equation} $$

.

How to use this tool for Multiple matrix

Single Matrix

Cayley Hamilton Theorem and Diagonalization

$$ A^m + c_{m-1} A^{m-1} + ... + c_{0}I = 0 $$

Diagonalization of Matrix

A = PDP^{-1}

Mean Calculator

  1. Arithmetic Mean

Single Matrix

  1. Geometric Mean

Single Matrix

  1. Harmonic Mean

Single Matrix

  1. Harmonic Mean using AM and GM

Single Matrix

Sequence & Series

Arithmetic Progression

Geometric Progression

Sum of N terms of AP,GP and HP

Aliquot Sum

Single Matrix

Single Matrix

Golden And Silver Ratio

Single Matrix

Single Matrix

Types of Relations

Sets Formulas

$$ if \enspace A \enspace and \enspace B \enspace are \enspace overlapping \enspace sets \enspace n(A\cup B) = n(A) + n(B) - n(A \cap B) $$ $$ If A \enspace and \enspace B \enspace are \enspace disjoint \enspace sets \enspace n (A\cup B) = n(A) + n(B) $$ $$ n(A) = n(A\cup B) + n(A\cap B) - n(B) $$ $$ n(A\cap B) = n(A) + n(B) -n(A\cup B) $$ $$ n(B) = n(A\cup B) + n(A\cap B) -n(A) $$ $$ n(U) = n(A) + n(B) - n(A\cap B) + n((A\cup B)^c) $$ $$ n((A\cup B)^c) = n(U) + n(A\cap B) - n(A)- n(B) $$ $$ n(A\cup B) = n(A-B) + n(B-A) + n(A\cap B) $$ $$ n(A-B) = n(A \cup B) - n(B) $$ $$ n(A-B) = n(A) - n(A\cap B) $$ # Sigma Notaion - $$ \sum $$ is a letter of greek alphabets and it is called sigma. the symbol sigma represents the sum of similar term. - properties of sigma notation

$$ \sum_{r=1}^{n} T_{r} + T1 + T2 + T3 + ....+ Tn , where \enspace T_{n} \enspaceis \enspace the \enspace general \enspace term \enspace of \enspace the \enspace series $$ $$ \sum_{r=1}^{n} T_{r} \plusmn T_{r}^' = \sum_{r=1}^{n} T_{r} T_{r} \plusmn \sum_{r=1}^{n} T_{r}^' $$ $$ \sum_{r=1}^{n} T_{r} T_{r}^' = (\sum_{r=1}^{n} T_{r})(\sum_{r=1}^{n} T_{r}^') $$ $$ \sum_{r=1}^{n} \dfrac{T_{r}}{T_{r}^'} ! = \dfrac{\sum_{r=1}^{n} T_{r}}{\sum_{r=1}^{n} T_{r}^'} $$ $$ \sum_{r=1}^{n} aT_{r} = a \sum_{r=1}^{n} aT_{r} $$

Creamers Rule

Single Matrix Single Matrix

Mathematical Reasoning

P Q P^Q
T T T
T F F
F T F
F F F
P Q PvQ
T T T
T F T
F T T
F F F
P ~P
T F
F T

Euclid Geometry

Sets , Relations and Functions

What are sets

sets

sets