Conic Sections

Circle, Parabola, Ellipse, Hyperbola, Paraboloid

Conic Sections

One of the most important subjects of Geometry is conic parts. In mathematics, there are various types of conic sections that can be specified based on the angle created between the plane and the intersection of the right circular cone with it.

What are Conic Sections?


conic



Focus, Eccentricity and Directrix of Conic

$$ e = \dfrac{ cos α}{cos β} $$


Parameters of Conic


Conic Section Circle

If \(β= 90^o\) , the conic section formed is a circle as shown below.

conic

Some useful properties and formulas :

Different type of equations for circle

Equation Graph Center Radius
$$ x^2 + y^2 = a^2 $$ conic $$ (0,0) $$ $$ a $$
$$ (x-h)^2 + (y-k)^2 = a^2 $$ conic $$ (h,k) $$ $$ a $$
$$ x^2 + y^2 + 2gx + 2fy = 0 $$ conic $$ (-g,-f) $$ $$ \sqrt{g^2+f^2-c} $$


Equations of tangent of all the circles

Equation of Circle Point/Line of contact Equation of tangent
$$ x^2 + y^2 = a^2 $$ $$ (x1,y1) $$ $$ xx1 + yy1 = a^2 $$
$$ x^2 + y^2 = a^2 $$ $$ (acos\theta,b sin\theta) $$ $$ x cos\theta + y sin\theta = a $$
$$ x^2 + y^2 = a^2 $$ $$ y = mx+c $$ $$ y = mx\plusmn a\sqrt{1+m^2} $$
$$ x^2 + y^2 + 2gx + 2fy +c = 0 $$ $$ (x1,y1) $$ $$ xx1 + yy1 + g(x+x1) + f(y+y1) + c = 0 $$


Equations of Normal of all the circles

Equation of Circle Point/Line of contact Equation of normal
$$ x^2 + y^2 = a^2 $$ $$ (x1,y1) $$ $$ \dfrac{x}{x1} = \dfrac{y}{y1} $$
$$ x^2 + y^2 = a^2 $$ $$ (acos\theta,b sine\theta) $$ $$ y = x tan\theta $$
$$ x^2 + y^2 = a^2 $$ $$ y = mx+c $$ $$ x+my = \plusmn a\sqrt{1+m^2} $$
$$ x^2 + y^2 + 2gx + 2fy +c = 0 $$ $$ (x1,y1) $$ $$ \dfrac{y-y1}{x-x1} = \dfrac{y1+f}{x1+g} $$


Director circle of all circles

Equation of Circle Equation of director circle
$$ x^2 + y^2 = a^2 $$ $$ x^2 + y^2 = 2a^2 $$
$$ (x-h)^2 + (y-k)^2 = a^2 $$ $$ (x-h)^2 + (y-k)^2 = 2a^2 $$
$$ x^2 + y^2 + 2gx + 2fy +c = 0 $$ $$ (x+g)^2 + (y+f)^2 = 2(g^2+f^2-c) $$



Conic Section Ellipse

If \(α<β<90^o\), the conic section so formed is an ellipse as shown in the figure below.

conic
conic

Some useful properties and formulas :

Ellipse parameters formula

Equation Graph Focus Length of LR Directrix Length of major axis
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a>b $$ conic $$ (\plusmn ae,0) $$ $$ \dfrac{2b^2}{a} $$ $$ x = \plusmn \dfrac{a}{e} $$ $$ 2a $$
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a<b $$ conic $$ (0,\plusmn be) $$ $$ \dfrac{2a^2}{b} $$ $$ x = \plusmn \dfrac{b}{e} $$ $$ 2b $$


Equation of tangent of ellipse

Equation Parametric Coordinate Equation Of tangent Condition of tangency
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a>b $$ $$ (acos\theta,bsin\theta) $$ $$ y = mx \plusmn \sqrt{am^2+b^2} $$
$$ \dfrac{xcos\theta}{a} + \dfrac{ysin\theta}{b}= 1 $$
$$ c = \plusmn \sqrt{am^2+b^2} $$
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a<b $$ $$ (bcos\theta,asin\theta) $$ $$ y = mx \plusmn \sqrt{bm^2+a^2} $$
$$ \dfrac{xcos\theta}{b} + \dfrac{ysin\theta}{a}= 1 $$
$$ c = \plusmn \sqrt{bm^2+a^2} $$


Equations of normal of ellipse

Equation Parametric Coordinate Equation Of normal Condition of tangency
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a>b $$ $$ (acos\theta,bsin\theta) $$ $$ \dfrac{ax}{cos\theta} - \dfrac{by}{sin\theta}= a^2-b^2 $$ $$c = \plusmn \dfrac{m(a^2-b^2)}{\sqrt{a^2+b^2m^2}} $$
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a<b $$ $$ (bcos\theta,asin\theta) $$ $$ \dfrac{bx}{cos\theta} - \dfrac{ay}{sin\theta}= b^2-a^2 $$ $$ c = \plusmn \dfrac{m(b^2-a^2)}{\sqrt{b^2+a^2m^2}} $$



Equation of director circle of ellipse

Equation Equation of director circle
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a>b $$ $$ x^2+y^2=a^2+b^2 $$
$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 \enspace where \enspace a<b $$ $$ x^2+y^2=a^2+b^2 $$



Conic Section Parabola

If \(α=β\), the conic section formed is a parabola (represented by the orange curve) as shown below.

conic
conic

Some useful properties and formulas :

Parabola Parameters

Equation Graph Focus Length of LR Diretrix Length of major axis
$$ y^2 = 4ax $$ conic $$ (a,0) $$ $$ 4a $$ $$ x = -a $$ $$ y=0 $$
$$ y^2 = -4ax $$ conic $$ (-a,0) $$ $$ 4a $$ $$ x = a $$ $$ y=0 $$
$$ x^2 = 4ay $$ conic $$ (0,a) $$ $$ 4a $$ $$ y = -a $$ $$ x=0 $$
$$ x^2 = -4ay $$ conic $$ (0,-a) $$ $$ 4a $$ $$ y = a $$ $$ x=0 $$



Equations of tangents of all parabolas in slope form

Equation of parabola Point of contact in terms of slope Equation of tangent in terms of slope(m) Condition of tangency
$$ y^2 = 4ax $$ $$ (\dfrac{a}{m^2},\dfrac{2a}{m}) $$ $$ y = mx+\dfrac{a}{m} $$ $$ c=\dfrac{a}{m} $$
$$ y^2 = -4ax $$ $$ (-\dfrac{a}{m^2},-\dfrac{2a}{m}) $$ $$ y = mx-\dfrac{a}{m} $$ $$ c=-\dfrac{a}{m} $$
$$ x^2 = 4ay $$ $$ (2am,am^2) $$ $$ y = mx - am^2 $$ $$ c = -am^2 $$
$$ x^2 = -4ay $$ $$ (2am,am^2) $$ $$ y = mx - am^2 $$ $$ c = -am^2 $$



Equatons of normal of all parabolas in slope form

Equation of parabola Point of contact in terms of slope Equation of normal in terms of slope(m) Condition of normality
$$ y^2 = 4ax $$ $$ (am^2,-2am) $$ $$ y = mx-2am-am^3 $$ $$ c=-2am-am^3 $$
$$ y^2 = -4ax $$ $$ (am^2,2am) $$ $$ y = mx+2am+am^3 $$ $$ c=2am+am^3 $$
$$ x^2 = 4ay $$ $$ (-\dfrac{2a}{m},\dfrac{a}{m^2}) $$ $$ y = mx + 2a +\dfrac{a}{m^2} $$ $$ c = 2a+\dfrac{a}{m^2} $$
$$ x^2 = -4ay $$ $$ (\dfrac{2a}{m},-\dfrac{a}{m^2}) $$ $$ y = mx - 2a -\dfrac{a}{m^2} $$ $$ c = -2a-\dfrac{a}{m^2} $$



Director circles of all parabolas

Equation of parabola Equation of director circle
$$ y^2 = 4ax $$ $$ x+a=0 $$
$$ y^2 = -4ax $$ $$ x-a=0 $$
$$ x^2 = 4ay $$ $$ y+a=0 $$
$$ x^2 = -4ay $$ $$ y-a=0 $$



Conic Section Hyperbola

If \(0≤β<α\), then the plane intersects both nappes and the conic section so formed is known as a hyperbola

conic
conic

Some useful properties and formulas :

Hyperbola Parameters

Equation Graph Focus Length of LR Directrix Length of major axis
$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 $$ conic $$ (\plusmn ae,0) $$ $$ \dfrac{2b^2}{a} $$ $$ x = \plusmn \dfrac{a}{e} $$ $$ 2a $$
$$ \dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1 $$ conic $$ (0,\plusmn be) $$ $$ \dfrac{2a^2}{b} $$ $$ y = \plusmn \dfrac{b}{e} $$ $$ 2b $$
$$ x^2 - y^2 = a^2 $$ conic $$ (0,\plusmn a\sqrt{2}) $$ $$ 2a $$ $$ x = \plusmn \dfrac{a}{\sqrt{2}} $$ $$ 2a $$



Equations of tangent of hyperbola

Equation Parametric Co-ordinate Equation of tangent Condition of tangency
$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 $$ $$ (asec\theta,btan\theta) $$ $$ y = mx\plusmn \sqrt{am^2-b^2} $$ $$ c = \plusmn \sqrt{am^2-b^2} $$
$$ \dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1 $$ $$ (bsec\theta,atan\theta) $$ $$ y = mx\plusmn \sqrt{-bm^2+a^2} $$ $$ c = \plusmn \sqrt{-bm^2+a^2} $$
$$ x^2 - y^2 = a^2 $$ $$ (asec\theta,atan\theta) $$ $$ y = mx\plusmn \sqrt{am^2-a^2} $$ $$ c = \plusmn \sqrt{am^2-a^2} $$



Equations of normal of hyperbola

Equation Parametric Co-ordinate Equation of normal Condition of Normality
$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 $$ $$ (asec\theta,btan\theta) $$ $$ \dfrac{ax}{sec\theta} + \dfrac{by}{tan\theta} = a^2+b^2 $$ $$ c = \dfrac{a(a^2+b^2)}{\sqrt{a^2-b^2m^2}} $$
$$ \dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1 $$ $$ (bsec\theta,atan\theta) $$ $$ \dfrac{bx}{sec\theta} + \dfrac{ay}{tan\theta} = a^2+b^2 $$ $$ c = \dfrac{a(b^2-a^2)}{\sqrt{a^2m^2-b^2}} $$
$$ x^2 - y^2 = a^2 $$ $$ (asec\theta,atan\theta) $$ $$ \dfrac{x}{sec\theta} + \dfrac{y}{tan\theta} = 2a $$ $$ c = \dfrac{2am}{\sqrt{1-m^2}} $$



Equation of director circle of hyperbola

Equation Equation of director circle
$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 $$ $$ x^2+y^2 = a^2-b^2 $$
$$ \dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1 $$ $$ x^2+y^2 = b^2-a^2 $$



Paraboloid

conic
conic
conic