Calculus

Integration, Differentiation, Partial Derivative, Laplace Transform, Inverse Laplace Transform, Power Series, Maxima And Minima of Functions, Beta Gamma Functions, Limits, Tangents, Vector Calculus, Fourier Series, Convergence and Divergence Of Series

Calculus

Inverse, Periodicity of Functions

What is a Period

$$ f(x+a) = f(x) \enspace for \enspace a > 0 $$

How to find a period?

$$ if \enspace for \enspace f(x) \enspace period = T, \enspace then \enspace period \enspace for \enspace f(ax) \enspace = \dfrac{T}{a} $$ $$ Rest \enspace for \enspace all \enspace other \enspace cases of \enspace functions, \enspace the \enspace period \enspace remains \enspace same $$

What are inverse functions?

How to find inverse?

$$ The \enspace inverse\enspace function \enspace returns \enspace the orignal \enspace value \enspace for \enspace which \enspace a \enspace function \enspace gave \enspace the \enspace out put $$

Transformation of Functions

$$ if \enspace function \enspace f(X) \enspace changes \enspace to \enspace f(x) + b \enspace or \enspace f(x) - b - $$

trans

$$ if f(x) \enspace changes \enspace to \enspace |f(X)|-$$

trans

$$ if f(x) \enspace changes \enspace to \enspace f(|X|)-$$

trans

$$ if y = f(x) \enspace changes \enspace to \enspace |y| = f(x)$$

trans

$$ if f(x) \enspace changes \enspace to \enspace af(x)$$

trans

$$ if f(x) \enspace changes \enspace to \enspace f(ax)$$

trans

Integration

Useful Integrals

Common Functions Function Integral
Constant $$\int a \enspace dx $$ $$ ax + C $$
Variable $$\int x \enspace dx $$ $$ x^2 + C $$
Square $$\int x^2 \enspace dx $$ $$ x^3/3 + C $$
Reciprocal $$\int (1/x) \enspace dx $$ $$ ln(x) + C $$
Exponential $$\int e^x \enspace dx $$ $$ e^x + C $$
$$\int a^x \enspace dx $$ $$ a^x/ln(a) + C $$
$$\int ln(x) \enspace dx $$ $$ x*ln(x)-x + C $$
Trigonometry $$\int cos(x) \enspace dx $$ $$ sin(x) + C $$
$$\int sin(x) \enspace dx $$ $$ -cos(x) + C $$
$$\int sec^2(x) \enspace dx $$ $$ tan(x) + C $$


$$ \int x dx $$ $$ \int x^2/3 dx $$ $$ \int 2x^3 dx $$ $$ \int (4x-2) dx $$ $$ \int (5x^3-8x) dx $$

Integration


Differentation

$$Power\enspace Rule: \dfrac{d}{dx} (x^n) = nx^{(n-1)}$$ $$Derivative\enspace of\enspace a\enspace constant, a: \dfrac{d}{dx} (a) = 0$$ $$Derivative\enspace of\enspace a\enspace constant\enspace multiplied\enspace with\enspace function\enspace f: \dfrac{d}{dx} (a. f) = af^′$$ $$Sum\enspace Rule: \dfrac{d}{dx} (f ± g) = f^′ ± g^′$$ $$Product\enspace Rule: \dfrac{d}{dx} (f.g)= f.g^′ + g.f^′$$ $$Quotient\enspace Rule:\dfrac{d}{dx}(\dfrac{f}{g}) = \dfrac{g.f^′–f.g^′}{g^2}$$

Note this symbol is also used to define derivative

$$\dfrac{d}{dx}(sin x)=cos x$$ $$\dfrac{d}{dx}(cos x)=–sin x$$ $$\dfrac{d}{dx}(tan x)=sec^2x$$ $$\dfrac{d}{dx}(cot x)=−cosec^2x$$ $$\dfrac{d}{dx}(sec x)=secx . tanx$$ $$\dfrac{d}{dx}(cosec x)=−cosec x . cot x$$
$$\dfrac{d}{dx}(sinh x)=cosh x$$ $$\dfrac{d}{dx}(cosh x)=sinh x$$ $$\dfrac{d}{dx}(tanh x)=sech^2x$$ $$\dfrac{d}{dx}(coth x)=−cosech^2x$$ $$\dfrac{d}{dx}(sech x)=−sech x . tanh x$$ $$\dfrac{d}{dx}(cosech x)=−cosech x. coth x$$

$$ If\enspace y = x^4, \dfrac{dy}{dx}= 4x^3$$ $$ If\enspace y = 2x^4, \dfrac{dy}{dx} = 8x^3$$ $$ If\enspace y = x^5 + 2x-3, \dfrac{dy}{dx} = 5x^4 + 2$$

Theorems on Differentitation

Geometrical Interpretation of Lagrange’s Mean Value Theorem

Tod

Rolle’s theorem

Geometric Interpretation of Rolle’s Theorem

Tod

Cauchy’s Theorem

$$ \dfrac{f(b)-f(a)}{g(b)-g(a)} = \dfrac{f'(c)}{g'(c)} $$

Critical Point

Applications of derivative

Rate of change of quantity

Increasing and Decreasing Functions

Monotonicity At a point

Point of inflection

$$ Special \enspace Points $$ $$ Critical \enspace Points : the \enspace points \enspace of \enspace domain \enspace for \enspace which \enspace f'(x) \enspace is \enspace equal \enspace to \enspace zero \enspace or \enspace doesn't \enspace exist \enspace are \enspace called \enspace critical \enspace points $$ $$ Stationary \enspace Points : the \enspace stationary \enspace points \enspace are \enspace the \enspace points \enspace of \enspace the \enspace domain \enspace where \enspace f'(x) = 0, \enspace every \enspace stationary \enspace point \enspace is \enspace a \enspace critical \enspace point. $$

Partial Differentiation

Product Rule: $$ If\enspace u = f(x,y).g(x,y), then, $$ $$ u_x = \dfrac{\partial u}{\partial x} = g(x,y)\dfrac{\partial f}{\partial x}+f(x,y)\dfrac{\partial g}{\partial x} \enspace and $$ $$ u_y = \dfrac{\partial u}{\partial y} = g(x,y)\dfrac{\partial f}{\partial y}+f(x,y)\dfrac{\partial g}{\partial y} $$ Quotient Rule: $$ If\enspace u = \dfrac{f(x,y)}{g(x,y)}, where\enspace g(x,y) \enspace ≠ 0,\enspace then;, $$ $$ u_x = \dfrac{g(x,y)\dfrac{\partial f}{\partial x}-f(x,y)\dfrac{\partial g}{\partial x}}{[g(x,y)^2} \enspace and $$ $$ u_y = \dfrac{g(x,y)\dfrac{\partial f}{\partial y}-f(x,y)\dfrac{\partial g}{\partial y}}{[g(x,y)^2]}$$ Power Rule: $$ If \enspace u = [f(x,y)]^n \enspace then, $$ $$ u_x = n|f(x,y)|^{n-1} \dfrac{\partial f}{\partial x} \enspace and $$ $$ u_y = n|f(x,y)|^{n-1} \dfrac{\partial f}{\partial y} $$

$$ f(x,y,z) = x^4 − 3xyz $$ $$ \dfrac{\partial f}{\partial x} = 4x^3 − 3yz $$ $$ \dfrac{\partial f}{\partial y} = -3xz $$ $$ \dfrac{\partial f}{\partial z} = -3xy $$

Maxima And Minima Functions

A local maximum point on a function is a point (x,y) on the graph of the function whose y coordinate is a larger than all other y coordniates on the graph at points “close to” (x,y). More precisely, (x,f(x)) is a local maximum if there is an interval (a,b) with (a < x < b) > f(z) for every z in (a,b) is a local minimum point if it has locally the smallest y coordinate . Again being more precise : (xf(x)) is a local minimum if there is an interval (a,b) with a < x < b and f(x) < f(z) for every z in (a,b). A local extremum is either a local minimum or a local maximum.

First Order Derivative Test

Second Order Derivative Tested

Power Series

Analytic Function

Beta and Gamma functions

What are beta functions

$$ B(p,q) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt $$ $$ Where \enspace p,q \enspace > 0 $$

#### Properties of Beta Fuctions

$$ B(p,q) = \int_{0}^{\infty} \dfrac{t^{p-1}}{(1+t)^{p+q}} dt $$ $$ B(p,q) = 2 \int_{0}^{\dfrac{\pi}{2}} sin^{2p-1} \theta cos^{2q-1} \theta $$ $$ B(p,q) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx $$ $$ B(p,q) = B(q,p) $$

What are gamma functions

$$ \gamma(x) = \int_{0}^{|\infty} t^{x-1} e^{-t} dt $$ $$ \gamma(n) = (n-1)! $$ $$ \gamma(\dfrac{1}{2}) = \dfrac{\sqrt{\pi}}{2} $$ $$ \gamma(\dfrac{n}{2}) = \gamma(\dfrac{n-2}{2})\dfrac{n}{2} $$ $$ \gamma n \gamma (1-n) = \dfrac{\pi}{sin n\pi} $$ $$ \gamma(m)\gamma(m+\dfrac{1}{2}) = \dfrac{\sqrt(\pi)}{2^{2m-1}} \gamma(2m) $$ $$ \gamma(\dfrac{1}{2}) = \sqrt(\pi) $$

Laplace Transform

Note : There is no need to add spaces between variables and always use brackets when you are passing some aruments to some functions or variables or may be working on some fractional part

Vector Calculus Theorems

Gauss Divergence Theorem

$$ \int\int F.n dS = \int\int\int div F dV $$

Stokes Theorem

$$ \int F dr = \int \int curl F dS $$

vector

Greens Theorem

$$ \int P dx + Q dy = \int \int (\dfrac{\partial Q }{\partial x} - \dfrac{\partial P}{\partial y})dA $$

vector

Vector Calculator

Vector Algebra

Magnitude of a vector

$$ |a| = \sqrt(x^2+y^2) $$

Unit Vector

$$ \hat{a} = \dfrac{a}{|a|} $$

Zero Vector

Characterstics of vecotr Math Adition

Scalar Multiplication

$$ S(a+b) = Sa+Sb $$ $$ a.1 = a $$ $$ a.0 = 0 $$ $$ a(-1) = -a $$

Scalar triple Product

$$ (abc) = (a X b) * c $$

Cross product

$$ axb = |a||b|sin\theta $$

Properties of cross product

$$ \overrightarrow{a} X \overrightarrow{b} = \overrightarrow{-b} X \overrightarrow{a} $$ $$ \overrightarrow{a} X \overrightarrow{a} = 0 $$ $$ \overrightarrow{a} X (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} X \overrightarrow{b} + \overrightarrow{a} X \overrightarrow{c} $$ $$ \hat{i} X \hat{i} = \hat{j} X \hat{j} = \hat{k} X \hat{k} = 0 and \hat{i} X \hat{j} = \hat{k}, \hat{j} X \hat{k} = \hat{i}, \hat{k} X \hat{i} = \hat{j} $$ $$ Two \enspace non-zero \enspace vectors \overrightarrow{a} and \overrightarrow{b} are \enspace collinear \enspace if and \enspace only \enspace if \overrightarrow{a} X \overrightarrow{b} = 0 $$

Dot Product

$$ a.b = |a||b|cos\theta $$

Fourier Series

$$ The \enspace fourier \enspace series \enspace of \enspace the \enspace function \enspace is \enspace given \enspace by $$ $$ f(x) = \dfrac{a_{0}}{2} + \sum_{n=1}^{+\infty} (a_{n} cos nx + b_{n} sin nx) $$ $$ where \enspace the \enspace coefficients \enspace are \enspace defined \enspace by \enspace integrals: $$ $$ a_{0} = \dfrac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos nx dx , bn = \dfrac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin nx dx $$ $$ Fourier \enspace series \enspace of \enspace of \enspace even \enspace function $$

$$ f(x) = \dfrac{a_{0}}{2} + \sum_{n=1}^{+\infty} a_{n} cos nx $$ $$ where \enspace the \enspace fourier \enspace coefficients \enspace are \enspace given \enspace by \ensp the \enspace formula $$ $$ a_{0} = \dfrac{2}{\pi} \int_{0}^{\pi} f(x) dx, a_{n} = \dfrac{2}{\pi} \int_{0}^{\pi} f(x) cos nx dx $$

Fourier Series of odd function

$$ f(x) = \sum_{n=1}^{+\infty} b_{n} sinx nx$$ $$ where \enspace the coefficients \enspace are \enspace given \enspace by \enspace the \enspace formula $$ $$ b_{n} = \dfrac{2}{\pi} \int_{0}^{\pi} f(x) sin nx dx $$